In  $[0, 1]$ Lagrange's mean value theorem is $ NOT$  applicable to

  • [IIT 2003]
  • A

    $f(x) = \left\{ {\begin{array}{*{20}{c}}
      {\frac{1}{2} - x,\,\,\,\,\,\,\,\,\,x < \frac{1}{2}} \\ 
      {{{\left( {\frac{1}{2} - x} \right)}^2},\,x \geqslant \frac{1}{2}} 
    \end{array}} \right.$

  • B

    $f(x) = \left\{ {\begin{array}{*{20}{c}}
      {\frac{{\sin x}}{x}\,\,x \ne 0} \\ 
      {1,\,\,\,\,\,\,\,\,x = \frac{1}{2}} 
    \end{array}} \right.$

  • C

    $f(x) = x|x|$

  • D

    $f(x) = |x|$

Similar Questions

Consider the function $f (x) = 8x^2 - 7x + 5$ on the interval $[-6, 6]$. The value of $c$ that satisfies the conclusion of the mean value theorem, is

Let $f (x)$ and $g (x)$ are two function which are defined and differentiable for all $x \ge x_0$. If $f (x_0) = g (x_0)$ and $f ' (x) > g ' (x)$ for all $x > x_0$ then

Let $f :[2,4] \rightarrow R$ be a differentiable function such that $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4]$ with $f(2)=\frac{1}{2}$ and $f(4)=\frac{1}{4}$.

Consider the following two statements:

$(A): f(x) \leq 1$, for all $x \in[2,4]$

$(B)$ : $f(x) \geq \frac{1}{8}$, for all $x \in[2,4]$

Then,

  • [JEE MAIN 2023]

Let $f: R \rightarrow R$ be a differentiable function such that $f(a)=0=f(b)$ and $f^{\prime}(a) f^{\prime}(b) > 0$ for some $a < b$. Then, the minimum number of roots of $f^{\prime}(x)=0$ in the interval $(a, b)$ is

  • [KVPY 2010]

Let $\psi_1:[0, \infty) \rightarrow R , \psi_2:[0, \infty) \rightarrow R , f:[0, \infty) \rightarrow R$ and $g :[0, \infty) \rightarrow R$ be functions such that

$f(0)=g(0)=0$

$\Psi_1( x )= e ^{- x }+ x , \quad x \geq 0$

$\Psi_2( x )= x ^2-2 x -2 e ^{- x }+2, x \geq 0$

$f( x )=\int_{- x }^{ x }\left(| t |- t ^2\right) e ^{- t ^2} dt , x >0$

and

$g(x)=\int_0^{x^2} \sqrt{t} e^{-t} d t, x>0$

($1$) Which of the following statements is $TRUE$ ?

$(A)$ $f(\sqrt{\ln 3})+ g (\sqrt{\ln 3})=\frac{1}{3}$

$(B)$ For every $x>1$, there exists an $\alpha \in(1, x)$ such that $\psi_1(x)=1+\alpha x$

$(C)$ For every $x>0$, there exists a $\beta \in(0, x)$ such that $\psi_2(x)=2 x\left(\psi_1(\beta)-1\right)$

$(D)$ $f$ is an increasing function on the interval $\left[0, \frac{3}{2}\right]$

($2$) Which of the following statements is $TRUE$ ?

$(A)$ $\psi_1$ (x) $\leq 1$, for all $x>0$

$(B)$ $\psi_2(x) \leq 0$, for all $x>0$

$(C)$ $f( x ) \geq 1- e ^{- x ^2}-\frac{2}{3} x ^3+\frac{2}{5} x ^5$, for all $x \in\left(0, \frac{1}{2}\right)$

$(D)$ $g(x) \leq \frac{2}{3} x^3-\frac{2}{5} x^5+\frac{1}{7} x^7$, for all $x \in\left(0, \frac{1}{2}\right)$

  • [IIT 2021]